skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Moritz, Philipp"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As distributed applications become increasingly complex, so do their scheduling requirements. This development calls for cluster schedulers that are not only general, but also evolvable. Unfortunately, most existing cluster schedulers are not evolvable: when confronted with new requirements, they need major rewrites to support these requirements. Examples include gang-scheduling support in Kubernetes [6, 39] or task-affinity in Spark [39]. Some cluster schedulers [14, 30] expose physical resources to applications to address this. While these approaches are evolvable, they push the burden of implementing scheduling mechanisms in addition to the policies entirely to the application. ESCHER is a cluster scheduler design that achieves both evolvability and application-level simplicity. ESCHER uses an abstraction exposed by several recent frameworks (which we call ephemeral resources) that lets the application express scheduling constraints as resource requirements. These requirements are then satisfied by a simple mechanism matching resource demands to available resources. We implement ESCHER on Kubernetes and Ray, and show that this abstraction can be used to express common policies offered by monolithic schedulers while allowing applications to easily create new custom policies hitherto unsupported. 
    more » « less
  2. Task-based distributed frameworks (e.g., Ray, Dask, Hydro) have become increasingly popular for distributed applications that contain asynchronous and dynamic workloads, including asynchronous gradient descent, reinforcement learning, and model serving. As more data-intensive applications move to run on top of task-based systems, collective communication efficiency has become an important problem. Unfortunately, traditional collective communication libraries (e.g., MPI, Horovod, NCCL) are an ill fit, because they require the communication schedule to be known before runtime and they do not provide fault tolerance. We design and implement Hoplite, an efficient and fault-tolerant collective communication layer for task-based distributed systems. Our key technique is to compute data transfer schedules on the fly and execute the schedules efficiently through fine-grained pipelining. At the same time, when a task fails, the data transfer schedule adapts quickly to allow other tasks to keep making progress. We apply Hoplite to a popular task-based distributed framework, Ray. We show that Hoplite speeds up asynchronous stochastic gradient descent, reinforcement learning, and serving an ensemble of machine learning models that are difficult to execute efficiently with traditional collective communication by up to 7.8x, 3.9x, and 3.3x, respectively. 
    more » « less